

Searches for Neutrinos from WIMP Dark Matter

Doug Cowen, Penn State

- Potential Sources
- The IceCube Neutrino Detector
- Results from IceCube
- Future Prospects

IceCube includes about 250 researchers from 39 institutions around the world. Prof. Francis Halzen, University of Wisconsin – Madison is the principal investigator and Prof. Olga Botner from Uppsala University serves as the collaboration spokesperson.

Candidate WIMP Accumulators

- Earth (ν -accessible only)
 - Capture depends on WIMP velocity distribution
 - Only slow, light (M_{χ} < 50 GeV) WIMPs accessible
 - Unlikely to be in capture-annihilation equilibrium
 - Hard to link to physical quantities
 - Focus on spin-independent (SI) interactions

- Wide range of WIMP masses accessible
 - WIMP evaporation for $M_{\chi} < \sim 4$ GeV
 - ν absorption in sun for $M_{\chi} > \sim 1 \text{ TeV}$
- In equilibrium $(\Gamma_{Ann} = (1/2)\Gamma_{C})$
 - extract $\sigma_{\chi\text{-p}}$
- Access both spin-dependent (SD) and SI interactions

Candidate WIMP Accumulators

- Galactic Center (ν plus γ , antimatter)
 - WIMPs collisionless
 - Inner halo cusp/core structure not well known:
 - extract $\langle \sigma_{Ann} \cdot v \rangle$
 - average is over expected WIMP velocity distribution
 - or look for spectral lines
- Galactic Halo (ν plus γ, antimatter)
 - WIMPs collisionless
 - matter density known pretty well
 - extract $\langle \sigma_{Ann} \cdot v \rangle$

- attractively high mass-to-light ratio (dSph's)
 - extract $\langle \sigma_{Ann} \cdot v \rangle$
- lots of mass, possible clumpiness

WIMP→Neutrino Channels

- Consider "extrema" to bracket possible neutrino energy spectrum
 - Hard channel
 - e.g., $\chi\chi \rightarrow W^+W^-$ and $\chi\chi \rightarrow \tau^+\tau^-$
 - Average $E_v \sim M_\chi/3$
 - Soft Channel
 - e.g., $\chi\chi\rightarrow bb$
 - Average $E_{\nu} \sim M_{\chi}/6$
 - Line Search
 - $\chi\chi\rightarrow\nu\nu$
 - $E_v \sim M_\chi$
- Search for ν_{μ} -induced muons in detector

Summary of IceCube Searches

Search for dark matter annihilations to v at

E_v from 10 GeV – 10 TeV

Galactic Halo

•lceCube-22 limits (PRD 84 (2011) 022004)

•IceCube-79 limits

Dwarf spheroidal galaxies

•IceCube-59 limits

Galaxy clusters

•lceCube-59 limits (arXiv:1210.3557 2012)

Galactic Center

•lceCube-40 limits (arXiv:1210.3557 2012)

•lceCube-79 sensitivity

Image: M. Strassler

The IceCube Detector

- First operating km-scale neutrino detector
 - ~5000 10" PMTs
 - 78 strings: 125 m horiz., 17 m vert.
- Originally optimized for TeV-PeV energies
 - now also sensitive to ~10 GeV scale with DeepCore in-fill
 - 8 in-fill strings mostly 72 m & 7 m
- Sensitive to M_{χ} from below ~50 GeV to above ~100 TeV
- Physics-quality data taken with partially completed detector
 - IC-22, IC-40, IC-59, IC-79
 - IC-79 volume is about 1km³

Earth WIMPs

- Assumptions/Issues/
 Observations
 - Assumed velocity distribution matters
 - Earth is a shallow gravitational well
 - Neutrino oscillations can be relevant
 - "Dark disk" can increase earth's accumulation

Minimum
velocity for
WIMP to
be captured by
Earth after
scattering off
iron

Results and Predicted Sensitivity: Earth WIMPs

• Earth WIMPs

- Dedicated online trigger/filter in place at Pole
 - selects vertically upward-going events w/low E threshold
- No "off-source" region: analysis more challenging
 - · atmospheric neutrinos are main background
 - can't check with data.
- AMANDA analysis (published 2006)
 - Expected IceCube 10-yr sensitivity overlaid
 - Below: With and without "dark disc" assumption

Solar WIMPs

- extract neutrino sample, vetoing downgoing cosmic ray muons
 - sample dominated by atmospheric neutrinos
- maximize efficiency for ~horizontal events
 - sun is ±23° from horizon
- striking signature: high energy v excess from direction of sun

Solar WIMPs

- Assumptions/Issues/Observations
 - •In equilibrium: $\Gamma_{Ann.} = (1/2)\Gamma_{Cap.}$
 - annihilation rate depends only on capture rate, i.e., on scattering cross sections
 - analyses can place limit on σ_{scatt} .
 - Daughter neutrinos' oscillations can be relevant
 - Daughter neutrinos' absorption can be relevant
 - No known astrophysical source can mimic neutrino signal

• Solar WIMPs

- Recent (IC-79) analysis improvements:
 - Uses full year's data, including summer (317 days livetime)
 - Uses DeepCore to reach neutrino energies of 10-20 GeV

166 days austral summer **IceCube** Case 3 (SL): \rightarrow low energy → down-going \rightarrow strong containment

Image: M. Danninger

• Solar WIMPs

- Recent (IC-79) analysis improvements:
 - Uses full year's data, including summer (317 days livetime)
 - Uses DeepCore to reach neutrino energies of 10-20 GeV

Expected atmospheric neutrino flux.

Contained events (WinterLow) have lower energies than uncontained events (WinterHigh):

Probe different M_X

Solar WIMPs

- Use shape of distribution of space angle (ψ) w.r.t. sun
- Estimate background using off-source data
- Systematics include
 - ice properties
 - module efficiencies
 - v cross sections

Space Angle w.r.t. Sun

Solar WIMPs

- Use shape of distribution of space angle (ψ) w.r.t. sun
- Estimate background using off-source data
- Systematics include
 - ice properties
 - module efficiencies
 - v cross sections

(Angle between event track & direction from the Sun)

Space Angle w.r.t. Sun

IceCube Solar WIMP Search: Results

- Solar WIMPs
 - final sample
 - final limits (with expected sensitivity overlaid)

Expected sens. vs. observed result

IceCube Solar WIMP Search: Results

- Solar WIMPs
 - Final limits

- Most stringent σ_{SD} limit for most models (reaches M χ ~20 GeV)
- Complementary to direct detection efforts
- Different (and fewer) astrophysical uncertainties

IceCube, PRD 84 02200

IceCube Galactic Center & Halo WIMPs

- Assumptions/Issues/
 Observations
 - Halo: predict p(dark matter)
 - N-body simulations
 - Gravitational lensing observations
 - Models agree at r ~3-30 kpc
 - Galactic Center: unknown p
 - simulations can't get there
 - no direct measurements
 - but can still look for excess neutrinos therefrom
 - Interplay of decay channel and neutrino oscillations is relevant

FIG. 3. Differential muon neutrino energy spectrum per annihilation, taking neutrino oscillations into account. In this example we assume a WIMP mass of $300~{\rm GeV}$ and 100% branching fraction into the corresponding annihilation channel.

IceCube GC & Halo WIMP Searches

- Galactic Center and Halo
 - 90% CL limits for several annihilation channels (assuming 100% BRs)
 - Early IC-22&40 analyses shown

IceCube GC WIMP Search

- Galactic Center
 - Extend previous search, adding IC-79 data with DeepCore
 - Two independent analyses:
 - Low energy ($M_{\chi} < 300 \text{ GeV}$)
 - High energy ($M_{\chi} > 300 \text{ GeV}$)

IceCube GC WIMP Searches

- Galactic Center
 - Extend previous search, adding IC-79 data with DeepCore
 - Two independent analyses:
 - Low energy ($M_{\chi} < 300 \text{ GeV}$)
 - High energy ($M_{\chi} > 300 \text{ GeV}$)
 - "Starting events" sample opens up southern sky
 - relies on muon vetoing

IceCube GC WIMP Sensitivity

- Galactic Center:
 IC-79 sensitivity
 - first time IceCube can reach < 100 GeV masses for GC
 - 4 orders of magnitude improvement at this scale
 - unblinding of analysis underway

IceCube Halo WIMP Result

- Galactic Halo: IC-79 result
 - multipole analysis focuses on large scale anisotropies (100)
 - small halo-model dependencies
 - results compatible with backgroundonly hypothesis

IceCube Dwarf Galaxy & Cluster WIMP Result

- Dwarf galaxy and galaxy clusters:
 IC-59 results
 - IC-59 dwarf galaxy (stacking analysis)
 - •IC-59 galaxy cluster (point source search)

Future Work: IceCube/DeepCore

- IceCube/DeepCore can use <u>cascade</u> channel to test possible signals in PAMELA and Fermi data
 - background from downward-going neutrinoinduced muons is reduced
- (Highly effective veto and low energy reconstructions will keep muon neutrinos competitive, though.)

Conclusions

- Neutrinos are sensitive probes for detecting dark matter
- Searches for WIMP→v signatures from distinct sources are "self-complementary," and complementary to searches using other astrophysical messengers
- Solar WIMP annihilations to neutrinos would provide a "smoking gun" signature with minimal model assumptions
- Clever new ideas for detection channels and sources spur new analyses
- Future detectors with lower energy thresholds will probe region of parameter space made interesting by direct detection experiments
 - See PINGU talk, next.

PINGU & WIMPs

- PINGU: Precision IceCube Next Generation Upgrade
 - New IceCube in-fill array, to be proposed in fall 2013
 - Main physics goal: neutrino mass hierarchy with atmospheric neutrinos
 - see talk by T. DeYoung
 - II:00 Weds., Anderson 250
 - But also has sensitivity to WIMPs, especially at lower WIMP masses

© [2011] The Pygos Grou

The PINGU Collaboration

Plus: U. Erlangen, U. Manchester, NBI Copenhagen, Sungkyunkwan U., U. Tokyo, U. Toronto

PINGU Detector

- Further increase sensor density relative to DeepCore
 - Baseline geometry has ~40 additional strings @ 60 DOMs
 - IceCube-based technology plus R&D modules
 - Include new low-E calibration devices
 - Geometry optimization underway
 - Aims:
 - Physics program at $E_{thr} \sim few$ GeV
 - Neutrino mass hierarchy
 - Low mass WIMPs $(M_{\chi} \sim 10-100 \text{ GeV})$
 - R&D: Cherenkov ring segment reco.?

PINGU Fiducial Volume

•Below $E_{\nu} \sim 20$ GeV, PINGU provides gain in fiducial mass relative to the existing low E_{ν} in-fill, DeepCore

PINGU vs. DeepCore

- Simulated event:
 - 9.3 GeV neutrino
 - 4.4 GeV initial cascade
 - 4.9 GeV muon

DeepCore Only

- Showing physics hits only
 - no noise shown, but noise is not hard to remove

DeepCore + PINGU

D. I. Koskinen

Predicted PINGU WIMP Sensitivities

- Solar WIMP sensitivity
 - PINGU can probe interesting WIMP mass range
- GC Line sensitivity
 - Again, PINGU reaches interesting masses
- <u>N.B.</u> Plots at trigger level
 - somewhat optimistic

PINGU Details

- Letter of Intent out in next 1-2 months
- Proposal submissions in fall
- Detector time frame
 - Could start full-detector data taking as early as 2019
- Detector cost estimate
 - •\$8-12M startup costs for drill
 - •\$1.25M per string

Conclusions

- •PINGU can probe solar WIMPs with masses as low as 10 GeV
- Surrounding IceCube (and DeepCore) modules veto cosmic ray muons, giving PINGU access to downward-going starting events
 - solar WIMPs during austral summer
 - galactic center
- •If approved, PINGU can be up and running in ~6 years

Backup Slides

IceCube Dwarf Galaxy & Cluster WIMP Results

Dwarfs

Virgo with subclusters

Galaxy clusters

Future Results: IceCube

- Perform line search for neutrinos motivated by
 - 130 GeV gamma ray line discussion
 - general principles
 - it's a new way to search

Rott, Astroteilchenphysik in Deutschland 2012

IceCube Results

- •WIMP Decay: Assumptions
 - Dark matter is thermal relic and unstable
 - For them still to be here
 - $\tau(\chi) > \tau(universe) = 4 \times 10^{17} s$
 - Line spectrum from
 x→vv

Dwarf Spheroidals, Galaxy Clusters

- Assumptions/Issues/Observations
 - Dwarf galaxies:
 - attractive due to high mass-to-light ratio
 - many newly identified by Sloan
 - assume profile for dark matter (e.g. NFW*)
 - Galaxy clusters:
 - factor in presence of substructures
 - Neutrinos can probe higher WIMP masses than photons
 - Effective area for neutrinos increases with neutrino energy

Solar WIMPs

- Global SUSY analysis with IceCube
- Contours show I-2**σ** credible regions
 - grey regions are without IceCube data
 - colored regions are with IceCube (but indicate relative probability only, not goodness of fit)

Challenges: Event Reconstruction

- The ice could have been designed a little better for us.
 - Photon scattering and absorption lengths are high below 2100 m
 - $<\lambda_{\rm eff}>\sim 50~{\rm m}$
 - $<\lambda_{abs}> \sim 150 \text{ m}$
 - ...but they vary with depth throughout.
 - Our simulations must include all these variations in as much detail as we can measure.
- Be nice to be able to move in a calibrated light source next to each deployed DOM.
 Instead, use
 - muons
 - DOM LEDs

